Optical shaping of the polarization anisotropy in a laterally coupled quantum dot dimer

LIGHT-SCIENCE & APPLICATIONS(2020)

引用 9|浏览39
暂无评分
摘要
We find that the emission from laterally coupled quantum dots is strongly polarized along the coupled direction [11 over bar 0], and its polarization anisotropy can be shaped by changing the orientation of the polarized excitation. When the nonresonant excitation is linearly polarized perpendicular to the coupled direction [110], excitons (X(1)and X-2) and local biexcitons (X(1)X(1)and X2X2) from the two separate quantum dots (QD(1)and QD(2)) show emission anisotropy with a small degree of polarization (10%). On the other hand, when the excitation polarization is parallel to the coupled direction [11 over bar 0], the polarization anisotropy of excitons, local biexcitons, and coupled biexcitons (X1X2) is enhanced with a degree of polarization of 74%. We also observed a consistent anisotropy in the time-resolved photoluminescence. The decay rate of the polarized photoluminescence intensity along the coupled direction is relatively high, but the anisotropic decay rate can be modified by changing the orientation of the polarized excitation. An energy difference is also observed between the polarized emission spectra parallel and perpendicular to the coupled direction, and it increases by up to three times by changing the excitation polarization orientation from [110] to [11 over bar0]. These results suggest that the dipole-dipole interaction across the two separate quantum dots is mediated and that the anisotropic wavefunctions of the excitons and biexcitons are shaped by the excitation polarization.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要