谷歌浏览器插件
订阅小程序
在清言上使用

Deglycosylation Inactivation Initiated by a Novel Periplasmic Dehydrogenase Complex Provides a Novel Strategy for Eliminating the Recalcitrant Antibiotic Kanamycin

Environmental science & technology(2023)

引用 2|浏览18
暂无评分
摘要
Biodegradation using enzyme-based systems is a promising approach to minimize antibiotic loads in the environment. Aminoglycosides are refractory antibiotics that are generally considered non-biodegradable. Here, we provide evidence that kanamycin, a common aminoglycoside antibiotic, can be degraded by an environmental bacterium through deglycosylation of its 4 '-amino sugar. The unprecedented deglycosylation inactivation of kanamycin is initiated by a novel periplasmic dehydrogenase complex, which we designated AquKGD, composed of a flavin adenine dinucleotide-dependent dehydrogenase (AquKGD alpha) and a small subunit (AquKGD gamma) containing a twin-arginine signal sequence. We demonstrate that the formation of the AquKGD alpha-AquKGD gamma complex is required for both the degradation activity of AquKGD and its translocation into the periplasm. Native AquKGD was successfully expressed in the periplasmic space of Escherichia coli, and physicochemical analysis indicated that AquKGD is a stable enzyme. AquKGD showed excellent degradation performance, and complete elimination of kanamycin from actual kanamycin manufacturing waste was achieved with immobilized AquKGD. Ecotoxicity and cytotoxicity tests suggest that AquKGD-mediated degradation produces less harmful degradation products. Thus, we propose a novel enzymatic antibiotic inactivation strategy for effective and safe treatment of recalcitrant kanamycin residues.
更多
查看译文
关键词
antibiotic pollution,aminoglycoside antibiotics,kanamycin,bioremediation,enzyme degradation,FAD-dependent dehydrogenase
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要