谷歌浏览器插件
订阅小程序
在清言上使用

Compact non-volatile ferroelectric electrostatic doping optical memory based on the epsilon-near-zero effect.

Applied optics(2023)

引用 0|浏览15
暂无评分
摘要
With the booming development of optoelectronic hybrid integrated circuits, the footprint and power consumption of photonic devices have become the most constraining factors for development. To solve these problems, this paper proposes a compact, extremely low-energy and non-volatile optical readout memory based on ferroelectric electrostatic doping and the epsilon-near-zero (ENZ) effect. The writing/erasing state of an optical circuit is controlled by electrical pulses and can remain non-volatile. The device works on the principle that residual polarization charges of ferroelectric film, which is compatible with CMOS processes, are utilized to electrostatically dope indium tin oxide to achieve the ENZ state. Simulation results show that a significant modulation depth of 10.4 dB can be achieved for a device length of 60 µm with an energy consumption below 1 pJ.
更多
查看译文
关键词
optical,memory,non-volatile,epsilon-near-zero
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要