Chrome Extension
WeChat Mini Program
Use on ChatGLM

Orientation-Dependent Interaction between the Magnetic Plasmons in Gold Nanocups and the Excitons in WS2 Monolayer and Multilayer

ACS nano(2023)

Cited 3|Views26
No score
Abstract
The integration of two-dimensional transition metal dichalcogenides with plasmonic nanostructures is extremely attractive for the investigation of the resonance coupling between plasmons and excitons, which offers a framework for the study of cavity quantum electrodynamics and is of great potential for exploring diverse quantum technologies. Herein we report on the coupling between the magnetic plasmons supported by individual asymmetric Au nanocups and the excitons in WS2 monolayer and multilayer. Resonance coupling with the strength varying from weak to strong regimes is realized by adjusting the orientation of the individual Au nanocups on WS2 monolayer. Different energy detunings between the magnetic plasmons and the excitons are achieved by varying the size of the Au nanocup. The Rabi splitting energies extracted at zero detuning are up to 106 meV. The anticrossing feature is observed in the measured scattering spectra and simulated absorption spectra, which indicates that the resonance coupling between the magnetic plasmons in the Au nanocup and the excitons in WS2 monolayer enters the strongly coupled regime. A dependence of the coupling strength on the layer number is further observed when the Au nanocups are coupled with WS2 multilayer. Our study suggests a promising approach toward the realization of different coupling regimes in a simple hybrid system made of individual Au nanocups and two-dimensional materials.
More
Translated text
Key words
excitons,gold nanocups,magnetic plasmon resonance,plasmon-excition coupling,strong coupling,transition metal dichalcogenides
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined