谷歌浏览器插件
订阅小程序
在清言上使用

Effect of oxygen functional groups on competitive adsorption of benzene and water on carbon materials: Density functional theory study

Science of The Total Environment(2023)

引用 12|浏览49
暂无评分
摘要
It is important to study the effect of oxygen-containing functional groups on the competitive adsorption mechanism of benzene and water on the surface of carbon materials, and to directional modification of activated carbon to improve its selective adsorption of benzene in air. In this study, the adsorption characteristics of benzene and water on original and linked ester, carboxyl, hydroxyl, carbon materials linked by ether groups were calculated by quantum chemical simulation based on density functional theory. The types and proportions of weak interactions in the adsorption process were calculated by energy decomposition analysis, and the adsorption mechanism of carbon materials for water and benzene was described. The influence and contribution of oxygen-containing functional groups on the adsorption of benzene and water were further analyzed by van der Waals potential and electrostatic potential, respectively, so as to determine the difference in the adsorption effect of different types of oxygen-containing functional groups on the two molecules. It was found that the carboxyl group has a great influence on the hydrophilicity of carbon materials, and the electrostatic potential distribution before and after linking the carboxyl group changed significantly. Therefore, they can attract each other with water through hydrogen bonds and occupy the surface adsorption sites of carbon materials, thereby inhibiting the adsorption of benzene on carbon materials. On the contrary, due to its hydrophobic properties, the ether group will free up adsorption space for the adsorption of benzene on the surface of the carbon material, which is beneficial to the adsorption of benzene. The adsorption experiments were carried out, and the results were consistent with the simulation. This study provides an idea for preparing efficient carbonaceous adsorbent of benzene and reducing benzene pollution in industry.
更多
查看译文
关键词
Activated carbon,Van der Waals potential,Electrostatic potential,Selective adsorption
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要