谷歌浏览器插件
订阅小程序
在清言上使用

Relatively oxidized conditions for diamond formation at Udachnaya (Siberia)

European journal of mineralogy(2022)

引用 3|浏览24
暂无评分
摘要
Thanks to the physical strength of diamonds and their relatively unreactive chemical nature, their mineral inclusions may remain exceptionally preserved from alteration processes and chemical exchanges with surrounding minerals, fluids and/or melts following diamond formation. Cr-bearing spinels are relatively common inclusions found in peridotitic diamonds and important oxybarometers providing information about the oxygen fugacity (fO2) of their source mantle rocks. Here, we investigated a magnesiochromite-olivine touching pair in a diamond from the Udachnaya kimberlite (Siberia) by in situ single-crystal X-ray diffraction and energy-domain synchrotron Mossbauer spectroscopy, aiming to constrain the physical-chemical conditions of diamond formation and to explore the redox state of this portion of the Siberian craton when the diamond was formed. The P-T-fO(2) entrapment conditions of the inclusion pair, determined by thermo- and oxybarometric analyses, are similar to 5.7(0.4) GPa and similar to 1015(50) ? (although entrapment at higher T and re-equilibration during subsequent mantle storage are also possible) and fO(2) near the enstatite-magnesite-olivine-diamond (EMOD) buffer. The determined fO(2) is similar to, or slightly more oxidized than, those of xenoliths from Udachnaya, but whilst the xenoliths last equilibrated with the surrounding mantle just prior to their entrainment in the kimberlite at similar to 360 Ma, the last equilibration of the inclusion pair is much older, occurring at 3.5-3.1, similar to 2 or similar to 1.8 Ga before final encapsulation in its host diamond. Hence, the similarity between xenoliths and inclusion fO(2) values indicates that the modern redox state of this portion of the Siberian lithosphere was likely attained relatively early after its formation and may have persisted for billions of years after diamond formation, at least at the local scale. Moreover, the oxygen fugacity determination for the inclusion pair provides direct evidence of diamond formation near the EMOD buffer and is consistent with recent models suggesting relatively oxidized, water-rich CHO fluids as the most likely parents for lithospheric diamonds.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要