谷歌浏览器插件
订阅小程序
在清言上使用

Dynamic Traction Force Measurements of Migrating Immune Cells in 3D Biopolymer Matrices

Nature Physics(2024)

引用 1|浏览12
暂无评分
摘要
Immune cells, such as natural killer cells, migrate with high speeds of several micrometres per minute through dense tissue. However, the magnitude of the traction forces during this migration is unknown. Here we present a method to measure dynamic traction forces of fast migrating cells in biopolymer matrices from the observed matrix deformations. Our method accounts for the mechanical nonlinearity of the three-dimensional tissue matrix and can be applied to time series of confocal or bright-field image stacks. It allows for precise force reconstruction over a wide range of force magnitudes and object sizes—even when the imaged volume captures only a small part of the matrix deformation field. We demonstrate the broad applicability of our method by measuring forces from around 1 nN for axon growth cones up to around 10 μN for mouse intestinal organoids. We find that natural killer cells show bursts of large traction forces around 50 nN that increase with matrix stiffness. These force bursts are driven by myosin II contractility, mediated by integrin β1 adhesions, focal adhesion kinase and Rho-kinase activity, and occur predominantly when the cells migrate through narrow matrix pores. Immune cells are believed not to generate large traction forces during migration. Now, measurements of natural killer cells in dense tissue reveal bursts of large traction forces as they move through narrow pores.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要