Chrome Extension
WeChat Mini Program
Use on ChatGLM

Surface-to-Borehole Electromagnetics Using an Array System: A Case Study for Co2 Monitoring and the Energy Transition

Day 2 Tue, October 04, 2022(2022)

Cited 1|Views3
No score
Abstract
Abstract Fluid imaging technologies are used in a wide range of E&P applications. Among geophysical methods, electromagnetics (EM) determines subsurface resistivities and thus responds to fluid changes. On the path to zero carbon footprint, the most significant potential for EM lies in monitoring geothermal, carbon capture, utilization and storage (CCUS), and enhancing oil recovery (EOR). To optimize reservoir fluid monitoring, we calibrate surface measurements to well logs resulting in a 3D anisotropic model consistent with borehole data. This is done before and after depletion or injection to estimate a time-lapse reservoir response. As part of a carbon capture and storage project, we carried out baseline measurements and validated the surface EM data to the 3D anisotropic borehole model. The monitoring workflow for this project can easily be adapted for other applications to support the energy transition. From this, we learned that measurement accuracy requirements higher than 1 % because we are often imaging small anomalies. While there are always limits in acquisition set by industrial noise, we derived two ways of increasing the anomaly. One is by using, similar to a borehole focused logs, focusing methods in the acquisition setup. This is still subject to measurement accuracy limitations and limited to electric fields only. Another way is to add borehole sensors that increase the sensitivity by around a factor of 10. While shallow (around 50 m) is sufficient, they can be extended to deeper borehole sensors, bringing the measurements close to the anomaly and is thus the preferred approach. This, in combination with calibration back to the 3D anisotropic borehole log allows you to certify the data for its information content. This will give you quantifiable ways to derive risk values and significantly reduce acquisition and monitoring operations cost.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined