谷歌浏览器插件
订阅小程序
在清言上使用

Grain‐Boundary‐Rich Noble Metal Nanoparticle Assemblies: Synthesis, Characterization, and Reactivity

Advanced functional materials(2022)

引用 3|浏览8
暂无评分
摘要
Here, a comprehensive study on the synthesis, characterization, and reactivity of grain‐boundary (GB)‐rich noble metal nanoparticle (NP) assemblies is presented. A facile and scalable synthesis of Pt, Pd, Au, Ag, and Rh NP assemblies is developed, in which NPs are predominantly connected via Σ3 (111) twin GBs, forming a network. Driven by water electrolysis, the random collisions and oriented attachment of colloidal NPs in solution lead to the formation of Σ3 (111) twin boundaries and some highly mismatched GBs. This synthetic method also provides convenient control over the GB density without altering the crystallite size or GB type by varying the NP collision frequency. The structural characterization reveals the presence of localized tensile strain at the GB sites. The ultrahigh activity of GB‐rich Pt NP assembly toward catalytic hydrogen oxidation in air is demonstrated, enabling room‐temperature catalytic hydrogen sensing for the first time. Finally, density functional theory calculations reveal that the strained Σ3(111) twin boundary facilitates oxygen dissociation, drastically enhancing the hydrogen oxidation rate via the dissociative pathway. This reported large‐scale synthesis of the Σ3 (111) twin GB‐rich structures enables the development of a broad range of high‐performance GB‐rich catalysts.
更多
查看译文
关键词
catalyses,electrosyntheses,grain boundaries,hydrogen sensors,nanoparticle assemblies,noble metals
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要