谷歌浏览器插件
订阅小程序
在清言上使用

Anomalous fractal scaling in two-dimensional electric networks

Communications Physics(2023)

引用 1|浏览14
暂无评分
摘要
Much of the qualitative nature of physical systems can be predicted from the way it scales with system size. Contrary to the continuum expectation, we observe a profound deviation from logarithmic scaling in the impedance of a two-dimensional L C circuit network. We find this anomalous impedance contribution to sensitively depend on the number of nodes N in a curious erratic manner and experimentally demonstrate its robustness against perturbations from the contact and parasitic impedance of individual components. This impedance anomaly is traced back to a generalized resonance condition reminiscent of Harper’s equation for electronic lattice transport in a magnetic field, even though our circuit network does not involve magnetic translation symmetry. It exhibits an emergent fractal parametric structure of anomalous impedance peaks for different N that cannot be reconciled with a continuum theory and does not correspond to regular waveguide resonant behavior. This anomalous fractal scaling extends to the transport properties of generic systems described by a network Laplacian whenever a resonance frequency scale is simultaneously present.
更多
查看译文
关键词
Applied physics,Electronics,photonics and device physics,Physics,general
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要