Cerium Oxide Nanoparticles: Synthesis and Characterization for Biosafe Applications

Nanomanufacturing(2021)

引用 19|浏览3
暂无评分
摘要
Due to its excellent physicochemical properties, cerium oxide (CeO2) has attracted much attention in recent years. CeO2 nanomaterials (nanoceria) are widely being used, which has resulted in them getting released to the environment, and exposure to humans (mostly via inhalation) is a major concern. In the present study, CeO2 nanoparticles were synthesized by hydroxide-mediated method and were further characterized by Scanning Electron Microscopy (SEM), Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDX), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Diffraction Spectroscopy (XRD). Human lung epithelial (Beas-2B) cells were used to assess the cytotoxicity and biocompatibility activity of CeO2 nanoparticles. 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) and Live/Dead assays were performed to determine the cytotoxicity and biocompatibility of CeO2 nanoparticles. Generation of reactive oxygen species (ROS) by cerium oxide nanoparticles was assessed by ROS assay. MTT assay and Live/Dead assays showed no significant induction of cell death even at higher concentrations (100 μg per 100 μL) upon exposure to Beas-2B cells. ROS assay revealed that CeO2 nanoparticles did not induce ROS that contribute to the oxidative stress and inflammation leading to various disease conditions. Thus, CeO2 nanoparticles could be used in various applications including biosensors, cancer therapy, catalytic converters, sunscreen, and drug delivery.
更多
查看译文
关键词
nanoparticles,oxide
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要