谷歌浏览器插件
订阅小程序
在清言上使用

MV-Net

ACM Journal on Emerging Technologies in Computing Systems(2019)

引用 5|浏览14
暂无评分
摘要
Recently the development of deep learning has been propelling the sheer growth of vision and speech applications on lightweight embedded and mobile systems. However, the limitation of computation resource and power delivery capability in embedded platforms is recognized as a significant bottleneck that prevents the systems from providing real-time deep learning ability, since the inference of deep convolutional neural networks (CNNs) and recurrent neural networks (RNNs) involves large quantities of weights and operations. Particularly, how to provide quality-of-services (QoS)-guaranteed neural network inference ability in the multitask execution environment of multicore SoCs is even more complicated due to the existence of resource contention. In this article, we present a novel deep neural network architecture, MV-Net, which provides performance elasticity and contention-aware self-scheduling ability for QoS enhancement in mobile computing systems. When the constraints of QoS, output accuracy, and resource contention status of the system change, MV-Net can dynamically reconfigure the corresponding neural network propagation paths and thus achieves an effective tradeoff between neural network computational complexity and prediction accuracy via approximate computing. The experimental results show that (1) MV-Net significantly improves the performance flexibility of current CNN models and makes it possible to provide always-guaranteed QoS in a multitask environment, and (2) it satisfies the quality-of-results (QoR) requirement, outperforming the baseline implementation significantly, and improves the system energy efficiency at the same time.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要