谷歌浏览器插件
订阅小程序
在清言上使用

Oxy-fuel Co-Combustion Dynamics of Phytoremediation Biomass and Textile Dyeing Sludge: Gas-to-ash Pollution Abatement.

Science of the total environment(2022)

引用 28|浏览25
暂无评分
摘要
The environmental pressures of major wastes in the circular economies can be abated leveraging the complementarity and optimal conditions of their co-combustion. The oxy-fuel co-combustion of phytoremediation biomass of Sedum alfredii Hance (SAH) and textile dyeing sludge (TDS) may be a promising choice for sustainable CO2 capture and a waste-to-energy conversion. This study characterized and quantified their co-combustion performances, kinetics, and interactions as a function of blend ratio, atmosphere type, and temperature. With a focus on the characteristic elements of SAH (Ca, K, Zn, and Cd) and TDS (Al and S), changes in the mineral phases and ash melting and slagging trends of K2O-Al2O3-SiO2 and CaO-Al2O3-SiO2 systems were quantified. The Zn and Cd residual rates of the co-combustion of 75% SAH and 25% TDS rose by 58.52% and 5.93%, respectively, in the oxy-fuel atmosphere at the 30% oxygen concentration, relative to the mono-combustion of SAH in the air atmosphere. The co-combustion in the oxy-fuel atmosphere at the 20% oxygen concentration delayed the release peaks of SO2, C2S, and H2S, while the Ca-rich SAH captured S in TDS through the formation of CaSO4. Our findings provide new and practical insights into the oxy-fuel co-combustion toward the enhanced co-circularity.
更多
查看译文
关键词
Pollution abatement,Oxy-fuel combustion,Gas emissions,Mineral transformations,Ash slagging
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要