谷歌浏览器插件
订阅小程序
在清言上使用

Statistical and machine learning methods applied to the prediction of different tropical rainfall types

Jiayi Wang, Raymond K. W. Wong, Mikyoung Jun, Courtney Schumacher, R. Saravanan, Chunmei Sun

ENVIRONMENTAL RESEARCH COMMUNICATIONS(2021)

引用 2|浏览5
暂无评分
摘要
Predicting rain from large-scale environmental variables remains a challenging problem for climate models and it is unclear how well numerical methods can predict the true characteristics of rainfall without smaller (storm) scale information. This study explores the ability of three statistical and machine learning methods to predict 3-hourly rain occurrence and intensity at 0.5 degrees resolution over the tropical Pacific Ocean using rain observations the Global Precipitation Measurement (GPM) satellite radar and large-scale environmental profiles of temperature and moisture from the MERRA-2 reanalysis. We also separated the rain into different types (deep convective, stratiform, and shallow convective) because of their varying kinematic and thermodynamic structures that might respond to the large-scale environment in different ways. Our expectation was that the popular machine learning methods (i.e., the neural network and random forest) would outperform a standard statistical method (a generalized linear model) because of their more flexible structures, especially in predicting the highly skewed distribution of rain rates for each rain type. However, none of the methods obviously distinguish themselves from one another and each method still has issues with predicting rain too often and not fully capturing the high end of the rain rate distributions, both of which are common problems in climate models. One implication of this study is that machine learning tools must be carefully assessed and are not necessarily applicable to solving all big data problems. Another implication is that traditional climate model approaches are not sufficient to predict extreme rain events and that other avenues need to be pursued.
更多
查看译文
关键词
precipitation occurrence,rain rate extremes,convective storms,generalized linear model,random forest,neural network
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要