谷歌浏览器插件
订阅小程序
在清言上使用

Therapeutic Enzymes As Non-Conventional Targets in Cardiovascular Impairments: A Comprehensive Review

Canadian journal of physiology and pharmacology(2021)

引用 3|浏览4
暂无评分
摘要
Over the last few decades, substantial progress has been made towards the understanding of cardiovascular diseases. In-depth mechanistic insights have also provided opportunities to explore novel therapeutic targets and to discover new treatment regimens. Therapeutic enzymes are examples of such opportunities. The enzymes protect against a variety of cardiovascular diseases, however, even minor malfunctioning of these enzymes may lead to deleterious outcomes. Owing to their great versatility, the inhibition and activation of these enzymes are key regulatory approaches to counter the onset and progression of several cardiovascular impairments. While cardiovascular remedies are already available in excess and are efficacious, a comprehensive description of novel therapeutic enzymes to combat cardiovascular diseases would still be of great benefit. In the light of this, the regulation of functional activities of these enzymes also opens a new avenue for the treatment approaches to be employed. This review describes the importance of non-conventional enzymes such as nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX), phosphodiesterase (PDE), arginase, superoxide dismutase (SOD), thioredoxin reductase (TXNRD) and selenoprotein T (SELENOT), cytochrome b5 reductase 3 (CYB5R3), epoxide hydrolase (EHs), xanthine oxidoreductase (XOR), matrix metalloprotease (MMPs), and dopamine beta hydroxylase (DBH), as potential candidates in several cardiovascular disorders while highlighting some of the recently targeted therapeutic enzymes in cardiovascular diseases. We also discuss the role of intrinsic antioxidant defense system involved in cardioprotection followed by addressing some of the clinical investigations considering the use of antioxidant as a preferred therapy of cardiovascular complications.
更多
查看译文
关键词
Therapeutic Targets
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要