Chrome Extension
WeChat Mini Program
Use on ChatGLM

Fluorescent imaging for cancer therapy and cancer gene therapy

Molecular therapy oncolytics(2021)

Cited 6|Views1
No score
Abstract
The translation of laboratory science into effective clinical cancer therapy is gaining momentum more rapidly than any other time in history. Understanding cancer cell-surface receptors, cancer cell growth, and cancer metabolic pathways has led to many promising molecular-targeted therapies and cancer gene therapies. These same targets may also be exploited for optical imaging of cancer. Theoretically, any antibody or small molecule targeting cancer can be labeled with bioluminescent or fluorescent agents. In the laboratory setting, fluorescence imaging (FI) and bioluminescence imaging (BLI) have long been used in preclinical research for quantification of tumor bulk, assessment of targeting of tumors by experimental agents, and discrimination between primary and secondary effects of cancer treatments. Many of these laboratory techniques are now moving to clinical trials. Imageable engineered fluorescent probes that are highly specific for cancer are being advanced. This will allow for the identification of tumors for staging, tracking novel therapeutic agents, assisting in adequate surgical resection, and allowing image-guided biopsies. The critical components of FI include (1) a fluorescent protein that is biologically safe, stable, and distinctly visible with a high target to background ratio and (2) highly sensitive optical detectors. This review will summarize the most promising optical imaging agents and detection devices for cancer clinical research and clinical care.
More
Translated text
Key words
deep-tissue imaging,fluorescence,laparoscopy,MIS,minimally invasive surgery,molecular imaging,near infrared,NIR,oncolytic viral therapy
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined