谷歌浏览器插件
订阅小程序
在清言上使用

Standardizing Registry Data to the OMOP Common Data Model: Experience from Three Pulmonary Hypertension Databases.

BMC Medical Research Methodology(2021)

引用 15|浏览23
暂无评分
摘要
Background The Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) can be used to transform observational health data to a common format. CDM transformation allows for analysis across disparate databases for the generation of new, real-word evidence, which is especially important in rare disease where data are limited. Pulmonary hypertension (PH) is a progressive, life-threatening disease, with rare subgroups such as pulmonary arterial hypertension (PAH), for which generating real-world evidence is challenging. Our objective is to document the process and outcomes of transforming registry data in PH to the OMOP CDM, and highlight challenges and our potential solutions. Methods Three observational studies were transformed from the Clinical Data Interchange Standards Consortium study data tabulation model (SDTM) to OMOP CDM format. OPUS was a prospective, multi-centre registry (2014-2020) and OrPHeUS was a retrospective, multi-centre chart review (2013-2017); both enrolled patients newly treated with macitentan in the US. EXPOSURE is a prospective, multi-centre cohort study (2017-ongoing) of patients newly treated with selexipag or any PAH-specific therapy in Europe and Canada. OMOP CDM version 5.3.1 with recent OMOP CDM vocabulary was used. Imputation rules were defined and applied for missing dates to avoid exclusion of data. Custom target concepts were introduced when existing concepts did not provide sufficient granularity. Results Of the 6622 patients in the three registry studies, records were mapped for 6457. Custom target concepts were introduced for PAH subgroups (by combining SNOMED concepts or creating custom concepts) and World Health Organization functional class. Per the OMOP CDM convention, records about the absence of an event, or the lack of information, were not mapped. Excluding these non-event records, 4% (OPUS), 2% (OrPHeUS) and 1% (EXPOSURE) of records were not mapped. Conclusions SDTM data from three registries were transformed to the OMOP CDM with limited exclusion of data and deviation from the SDTM database content. Future researchers can apply our strategy and methods in different disease areas, with tailoring as necessary. Mapping registry data to the OMOP CDM facilitates more efficient collaborations between researchers and establishment of federated data networks, which is an unmet need in rare diseases.
更多
查看译文
关键词
Pulmonary hypertension,Registry,Observational data,Common data model,Data mapping
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要