谷歌浏览器插件
订阅小程序
在清言上使用

Natural Diversity of FAD-dependent 4-Hydroxybenzoate Hydroxylases

Archives of biochemistry and biophysics(2021)

引用 13|浏览5
暂无评分
摘要
4-Hydroxybenzoate 3-hydroxylase (PHBH) is the most extensively studied group A flavoprotein monooxygenase (FPMO). PHBH is almost exclusively found in prokaryotes, where its induction, usually as a consequence of lignin degradation, results in the regioselective formation of protocatechuate, one of the central intermediates in the global carbon cycle. In this contribution we introduce several less known FAD-dependent 4-hydroxybenzoate hydroxylases. Phylogenetic analysis showed that the enzymes discussed here reside in distinct clades of the group A FPMO family, indicating their separate divergence from a common ancestor. Protein homology modelling revealed that the fungal 4-hydroxybenzoate 3-hydroxylase PhhA is structurally related to phenol hydroxylase (PHHY) and 3-hydroxybenzoate 4-hydroxylase (3HB4H). 4-Hydroxybenzoate 1-hydroxylase (4HB1H) from yeast catalyzes an oxidative decarboxylation reaction and is structurally similar to 3-hydroxybenzoate 6-hydroxylase (3HB6H), salicylate hydroxylase (SALH) and 6-hydroxynicotinate 3-monooxygenase (6HNMO). Genome mining suggests that the 4HB1H activity is widespread in the fungal kingdom and might be responsible for the oxidative decarboxylation of vanillate, an import intermediate in lignin degradation. 4-Hydroxybenzoyl-CoA 1-hydroxylase (PhgA) catalyzes an intramolecular migration reaction (NIH shift) during the three-step conversion of 4-hydroxybenzoate to gentisate in certain Bacillus species. PhgA is phylogenetically related to 4-hydroxyphenylacetate 1-hydroxylase (4HPA1H). In summary, this paper shines light on the natural diversity of group A FPMOs that are involved in the aerobic microbial catabolism of 4-hydroxybenzoate.
更多
查看译文
关键词
Catabolism,Flavoprotein,4-Hydroxybenzoate,Lignin,Oxygenation,Phylogeny
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要