谷歌浏览器插件
订阅小程序
在清言上使用

Global Analysis of Protein Succinylation Modification of Nostoc Flagelliforme in Response to Dehydration

Journal of proteomics(2021)

引用 8|浏览7
暂无评分
摘要
Nostoc flagelliforme is a type of terrestrial cyanobacteria that is distributed in arid or semi-arid steppes in China. To research the molecular mechanisms underlying the adaptation of N. flagelliforme to drought stress, the succinylated expression profile and changes in N. flagelliforme that resulted as a response to dehydration were analyzed by label-free proteomics. A total of 1149 succinylated sites, 1128 succinylated peptides, and 396 succinylated proteins were identified. Succinylated proteins were differentially involved in photosynthesis and energy metabolism, as well as in reactive oxygen species (ROS) scavenging. Motif-X analysis of succinylated sites determined a succinylation motif [KxxG]. N. flagelliforme adapts to dehydration by increasing glucose metabolism and pentose phosphate pathway flux, and decreasing photosynthetic rate, which some of the key proteins were succinylated. ROS scavenging was mainly involved in the regulation of the enzyme antioxidant defense system and non-enzymatic antioxidant defense system through succinylation modification, thus eliminating excessive ROS. Protein succinylation of N. flagelliforme may play an important regulatory role in response to dehydration. The results are foundational, as they can inform future research into the mechanisms involved in the succinylation regulation mechanism of N. flagelliforme in response to dehydration. SIGNIFICANCE: The global succinylation network involved in response to dehydration in N. flagelliforme has been established. We found that many succinylated proteins were involved in photosynthesis, glucose metabolism and antioxidation. The global survey of succinylated proteins and the changes of succinylated levels in response to dehydration provided effective information for the drought tolerance mechanism in N. flagelliforme.
更多
查看译文
关键词
Nostoc flagelliforme,Lysine succinylation,Proteomics,Post-translational modification,Drought tolerance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要