谷歌浏览器插件
订阅小程序
在清言上使用

Interval Universal Approximation for Neural Networks

Proceedings of the ACM on programming languages(2022)

引用 9|浏览84
暂无评分
摘要
To verify safety and robustness of neural networks, researchers have successfully applied abstract interpretation , primarily using the interval abstract domain. In this paper, we study the theoretical power and limits of the interval domain for neural-network verification. First, we introduce the interval universal approximation (IUA) theorem. IUA shows that neural networks not only can approximate any continuous function f (universal approximation) as we have known for decades, but we can find a neural network, using any well-behaved activation function, whose interval bounds are an arbitrarily close approximation of the set semantics of f (the result of applying f to a set of inputs). We call this notion of approximation interval approximation . Our theorem generalizes the recent result of Baader et al. from ReLUs to a rich class of activation functions that we call squashable functions . Additionally, the IUA theorem implies that we can always construct provably robust neural networks under ℓ ∞ -norm using almost any practical activation function. Second, we study the computational complexity of constructing neural networks that are amenable to precise interval analysis. This is a crucial question, as our constructive proof of IUA is exponential in the size of the approximation domain. We boil this question down to the problem of approximating the range of a neural network with squashable activation functions. We show that the range approximation problem (RA) is a Δ 2 -intermediate problem, which is strictly harder than NP -complete problems, assuming coNP ⊄ NP . As a result, IUA is an inherently hard problem : No matter what abstract domain or computational tools we consider to achieve interval approximation, there is no efficient construction of such a universal approximator. This implies that it is hard to construct a provably robust network, even if we have a robust network to start with.
更多
查看译文
关键词
Abstract Interpretation,Universal Approximation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要