谷歌浏览器插件
订阅小程序
在清言上使用

Facile in Situ Formation of a Ternary 3D ZnIn2S4-MoS2 Microsphere/1d CdS Nanorod Heterostructure for High-Efficiency Visible-Light Photocatalytic H2 Production.

Nanoscale(2020)

引用 47|浏览31
暂无评分
摘要
To achieve high photocatalytic efficiency, developing heterostructure photocatalysts by integrating two or more semiconductor materials into a well-oriented nanostructure is an effective strategy. Therefore, under visible light irradiation, a novel ternary 3D ZnIn2S4-MoS2 microsphere/1D CdS nanorod (ZIS/MoS2/CdS) photocatalyst with excellent H2 evolution ability was prepared. For this purpose, using the solvothermal method, interfacial contact ZIS/MoS2 microspheres were prepared, and 1D CdS nanorods were closely inserted into the interspace of flower-shaped ZIS/MoS2 microspheres, to generate close contact between ZnIn2S4, MoS2, and CdS. To expedite the production, separation, and transfer of photoinduced electron-hole pairs, this unique ternary heterostructure demonstrated excellent energy level distribution and a dimensional structure. Under the same conditions, the H2 production rate of the component proportion of the 150%-ZIS/10%-MoS2/CdS (150 wt% ZIS and 10 wt% MoS2) photocatalyst reached 7570.4 μmol g-1 h-1, which was ∼39.8 and 69.0 times higher than that achieved using bare ZnIn2S4 and CdS, respectively. Furthermore, the apparent quantum efficiency (AQE) reached 30.38% at 420 nm within 6 h; thus, for designing photocatalysts with a diversiform structure and spatial charge separation, this study provides new tactics.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要