谷歌浏览器插件
订阅小程序
在清言上使用

Post-annealed graphite carbon nitride nanoplates obtained by sugar-assisted exfoliation with improved visible-light photocatalytic performance

JOURNAL OF COLLOID AND INTERFACE SCIENCE(2020)

引用 14|浏览21
暂无评分
摘要
Two-dimensional (2D) graphitic carbon nitride (g-C3N4) nanoplates (CNNP) have become a hot research topic in photocatalysis due to their small thickness and large specific surface area that favors charge transport and catalytic surface reactions. However, the wide application of 2D g-C3N4 nanoplates prepared by ordinary methods suffers from increased band gaps with a poor solar harvesting capability caused by the strong quantum confinement effect and reduced conjugation distance. In this paper, a facile approach of exfoliation and the following fast thermal treatment of the bulk g-C3N4 is proposed to obtain a porous few-layered g-C3N4 with nitrogen defects. Due to the preferable crystal, textural, optical and electronic structures, the as-obtained porous CNNP demonstrated a significantly improved photocatalytic activity towards water splitting than the bulk g-C3N4 and even the 3 nm-thick CNNP obtained by sugarassisted exfoliation of the bulk g-C3N4. The difference in the enhancement factors between the H2O splitting and organic decomposition has revealed the effect of N defects. This study offers insightful outlooks on the scalable fabrication of a porous few-layered structure with a promoted photocatalytic performance. (C) 2020 Elsevier Inc. All rights reserved.
更多
查看译文
关键词
g-C3N4 nanoplates,Co-grinding,Sugar,Thermal treatment,Photocatalytic activity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要