谷歌浏览器插件
订阅小程序
在清言上使用

Hematopoietic Differentiation of Human Pluripotent Stem Cells: HOX and GATA Transcription Factors as Master Regulators

CURRENT GENOMICS(2019)

引用 14|浏览15
暂无评分
摘要
Numerous human disorders of the blood system would directly or indirectly benefit from therapeutic approaches that reconstitute the hematopoietic system. Hematopoietic stem cells (HSCs), either from matched donors or ex vivo manipulated autologous tissues, are the most used cellular source of cell therapy for a wide range of disorders. Due to the scarcity of matched donors and the difficulty of ex vivo expansion of HSCs, there is a growing interest in harnessing the potential of pluripotent stem cells (PSCs) as a de novo source of HSCs. PSCs make an ideal source of cells for regenerative medicine in general and for treating blood disorders in particular because they could expand in-defmitely in culture and differentiate to any cell type in the body. However, advancement in deriving functional HSCs from PSCs has been slow. This is partly due to an incomplete understanding of the molecular mechanisms underlying normal hematopoiesis. In this review, we discuss the latest efforts to generate human PSC (hPSC)-derived HSCs capable of long-term engraftment. We review the regulation of the key transcription factors (TFs) in hematopoiesis and hematopoietic differentiation, the Homeobox (HOX) and GATA genes, and the interplay between them and microRNAs. We also propose that precise control of these master regulators during the course of hematopoietic differentiation is key to achieving functional hPSC-derived HSCs.
更多
查看译文
关键词
Hematopoiesis,embryonic stem cell,induced pluripotent stem cell,differentiation,engraftment,HOX genes,GATA,transcription factors,microRNA,epigenetic regulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要