谷歌浏览器插件
订阅小程序
在清言上使用

Impact of Layer Configuration and Doping on Electron Transport and Bias Stability in Heterojunction and Superlattice Metal Oxide Transistors

Advanced Functional Materials(2019)

引用 42|浏览14
暂无评分
摘要
The astonishing recent progress in the field of metal oxide thin‐film transistors (TFTs) and their debut in commercial displays is accomplished using vacuum‐processed multicomponent oxide semiconductors. However, emulating this success with their solution‐processable counterparts poses numerous scientific challenges. Here, the development of high mobility n‐channel TFTs based on ultrathin (<10 nm) alternating layers of In 2 O 3 and ZnO that are sequentially deposited to form heterojunction and superlattice channels is reported. The resulting TFTs exhibit high electron saturation mobility (13 cm 2 V −1 s −1 ), excellent current on/off ratios (>10 8 ) with nearly zero onset voltages and hysteresis‐free operation despite the low temperature processing (≤200 °C). The enhanced performance is attributed to the formation of a quasi‐2D electron gas‐like system at the In 2 O 3 /ZnO heterointerface due to the conduction band offset. It is shown that altering the oxide deposition sequence has an adverse effect on electron transport due to formation of trap states. Optimized multilayer TFTs are shown to exhibit improved bias‐stress stability compared to single‐layer TFTs. Modulating the electron concentration within the superlattice channel via selective n‐doping of the ZnO interlayers leads to almost 100% saturation mobility increase (≈25 cm 2 V −1 s −1 ) even when the TFTs are fabricated on flexible plastic substrates.
更多
查看译文
关键词
doping,heterojunction transistors,metal oxide semiconductors,solution processing,thin-film transistors
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要