谷歌浏览器插件
订阅小程序
在清言上使用

Polyethylenimine-associated cerium oxide nanoparticles: A novel promising gene delivery vector.

Life sciences(2019)

引用 18|浏览7
暂无评分
摘要
AIMS:The development of highly efficient and low toxic non-viral gene delivery vectors is the most challenging issues for successful application of gene therapy. A particular focus has been on understanding structure-activity relationships for transfection activity and toxicity of polyethylenimine (PEI). During the last decade, the use of cerium oxide nanoparticles (CeO2-NPs) in biomedicine has attracted much attention due to their pH-dependent antioxidant activity. CeO2-NPs provide protection normal cells from various forms of reactive oxygen species, but possess innate cytotoxicity and apoptosis to cancer cells. The purpose of this study was to design a new class of gene carriers by low molecular weight PEI (B-PEI 10 kDa) coordination onto CeO2-NPs. MAIN METHODS:B-PEI 10 kDa was conjugated to CeO2-NPs by Epichlorohydrin linker. Transfection efficiency, cytotoxic and apoptotic effects of pDNA-PEI-CeO2 NPs were evaluated on WEHI 164 cancer cells and normal L929 cells lines. KEY FINDINGS:PEI-CeO2 NPs was able to condense the pDNA at carrier/plasmid (C/P) weight ratios of 0.5. The size and zeta potential of pDNA-PEI-CeO2 NPs were 124 ± 7 nm and 22 ± 2 mV, respectively. The transfection efficacy of synthesized pDNA-PEI-CeO2 NPs improved and the cytotoxicity was decreased compared to pDNA-PEI. Moreover, pDNA-PEI-CeO2 NPs induced more apoptosis than unmodified PEI and CeO2-NPs control groups. pDNA-PEI-CeO2 NPs displayed more transfection, cytotoxicity, and apoptosis in WEHI 164 cancer cells than normal L929 cells. SIGNIFICANCE:In conclusion, PEI-CeO2 nanocarriers could act as a potential candidate for gene and drug delivery to cancerous and tumor cells.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要