谷歌浏览器插件
订阅小程序
在清言上使用

Polyvinylpyrrolidone - Reduced Graphene Oxide - Pd Nanoparticles as an Efficient Nanocomposite for Catalysis Applications in Cross-Coupling Reactions

BULLETIN OF CHEMICAL REACTION ENGINEERING AND CATALYSIS(2019)

引用 4|浏览4
暂无评分
摘要
This paper reported a scientific approach adopting microwave-assisted synthesis as a synthetic route for preparing highly active palladium nanoparticles stabilized by polyvinylpyrrolidone (Pd/PVP) and supported on reduced Grapheneoxide (rGO) as a highly active catalyst used for Suzuki, Heck, and Sonogashira cross coupling reactions with remarkable turnover number (6500) and turnover frequency of 78000 h(-1). Pd/PVP nanoparticles supported on reduced Graphene oxide nanosheets (Pd-PVP/rGO) showed an outstanding performance through high catalytic activity towards cross coupling reactions. A simple, reproducible, and reliable method was used to prepare this efficient catalyst using microwave irradiation synthetic conditions. The synthesis approach requires simultaneous reduction of palladium and in the presence of Gaphene oxide (GO) nanosheets using ethylene glycol as a solvent and also as a strong reducing agent. The highly active and recyclable catalyst has so many advantages including the use of mild reaction conditions, short reaction times in an environmentally benign solvent system. Moreover, the prepared catalyst could be recycled for up to five times with nearly the same high catalytic activity. Furthermore, the high catalytic activity and recyclability of the prepared catalyst are due to the strong catalyst-support interaction.The defect sites in the reduced Graphene oxide (rGO) act as nucleation centers that enable anchoring of both Pd/PVP nanoparticles and hence, minimize the possibility of agglomeration which leads to a severe decrease in the catalytic activity. Copyright (C) 2019 BCREC Group. All rights reserved
更多
查看译文
关键词
Graphene,Cross-Coupling,Microwave-assisted synthesis,Heterogeneous catalysis,Catalyst recycling
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要