谷歌浏览器插件
订阅小程序
在清言上使用

Inhibition Of Mdm2 Re-Sensitizes Rapamycin Resistant Renal Cancer Cells Via The Activation Of P53

Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology(2016)

引用 14|浏览36
暂无评分
摘要
Background/Aims: Rapamycin is a potential anticancer agent, which modulates the activity of mTOR, a key regulator of cell growth and proliferation. However, several types of cancer cells are resistant to the anti-proliferative effects of rapamycin. In this study, we report a MDM2/p53-mediated rapamycin resistance in human renal cancer cells. Methods: Trypan blue exclusion tests were used to determine the cell viability. Changes in mRNA and protein expression were measured using real-time PCR and western blot, respectively. Xenograft models were established to evaluate the in vivo effects of rapamycin combined with a MDM2 inhibitor. Results: Rapamycin treatment suppresses the expression of MDM2 and exogenous overexpression of MDM2 in A498 cells contributes to rapamycin resistance. By establishing a rapamycin resistant cell line, we observed that MDM2 was significantly upregulated in rapamycin resistant cells than that in rapamycin sensitive cells. Importantly, the rapamycin resistant cells demonstrated attenuated accumulation of p53 in the nucleus in response to rapamycin treatment. Moreover, the inhibition of MDM2 by siMDM2 sensitizes A498 cells to rapamycin through the activation of p53. In both in vitro and in vivo models, the combination of rapamycin with the MDM2 inhibitor, MI-319, demonstrated a synergistic inhibitory effect on rapamycin resistant cells. Conclusion: Our study reports a novel mechanism for rapamycin resistance in human renal cancer and provides a new perspective for the development of anticancer drugs. Copyright (C) 2016 S. Karger AG, Basel
更多
查看译文
关键词
Rapamycin,Renal cancer,MDM2,p53
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要