谷歌浏览器插件
订阅小程序
在清言上使用

Spiral Autowaves As Minimal, Distributed Gait Controllers For Soft-Bodied Animats

ALIFE 2016, THE FIFTEENTH INTERNATIONAL CONFERENCE ON THE SYNTHESIS AND SIMULATION OF LIVING SYSTEMS(2016)

引用 3|浏览7
暂无评分
摘要
Inspired by the self-organization of growing embryos and coordinated movement of multicellular assemblies such as the slime mold Dictyostelium, where each cell is controlled by the same controller (a DNA-encoded gene regulatory network), we evolve distributed gait control mechanisms for soft-bodied animats. The animats are made of compressible material, with each body region capable of independent actuation, controlled by a cell at its center. Each animat consists of hundreds of cells uniformly distributed throughout the body, each sharing the same artificial gene regulatory network and aware of the state of their local neighborhood. We found that one of the most common actuation patterns that emerged relied on cells synchronizing their oscillations in order to produce a rotating, spiral wave spanning throughout the body. We found this type of mechanism to emerge for a wide range of animat morphologies as well as in very different types of initial conditions. We investigate how the evolved controllers produce the pattern through local feedbacks and evaluate spiral stability when imperfect, noisy cells are used.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要