谷歌浏览器插件
订阅小程序
在清言上使用

Electrochemical codeposition of graphene/polypyrrole composites on carbon paper for electrochemical capacitors

Current Applied Physics(2016)

引用 14|浏览5
暂无评分
摘要
A simple electrochemical codeposition technique has been introduced to fabricate graphene oxide/polypyrrole (GO/PPy) composites. To increase the adsorption of colloidal GOs at the liquid–liquid interface, the organic supporting electrolyte like benzenesulfonate sodium (BS) is added in GO/pyrrole micelle solution, which does not induce the flocculation sedimentation of GO at elevated ionic strength. The narrow size distribution of GO/pyrrole/BS micelles is benefit for uniform codeposition of GO/PPy on the carbon fiber surface. Moreover, the GO nanosheets and benzensulfonate have been incorporated into composites as mixture dopants, which increased the growth orientation of PPy in electropolymerization process and result in more loose structure for ionic transportation. The composites electrodes exhibit high specific capacitance, good cyclic stability after electrochemical reduction of graphene oxide (RGO). The specific capacitance of composite electrode with low mass density still reaches 358 F/g at scan rate of 10 mV/s within an electrochemical windows of 1.0 V. The strong interaction effect between two components resists the mechanical deformation effect and exhibits only 7.1% decay at a charge/discharge current of 3 A/g after 1000 cycles. At increasing the mass density of composites to 8.4 mg/cm2, the areal capacitance of electrode almost grow linearly to 1.286 F/cm2, which is more than triple that of BS-doped PPy with the same mass density. The high capacity of the composite electrode exerts the potential applications in capacitive deionization, microbial fuel cell or even capacitive energy storage.
更多
查看译文
关键词
Graphene oxide,Polypyrrole,Micelle system,Electrochemical codeposition,Supercapacitors
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要