谷歌浏览器插件
订阅小程序
在清言上使用

Task-Dependent Coordination Levels of SmI2.

Journal of organic chemistry(2019)

引用 5|浏览12
暂无评分
摘要
Ligation plays a multifaceted role in the chemistry of SmI2. Depending on the ligand, two of its major effects are increasing the reduction potential of SmI2, and in the case of a ligand, which is also a proton donor, it may also enhance the reaction by protonation of the radical anion generated in the preceding step. It turns out that the number of ligand molecules that are needed to maximize the reduction potential of SmI2 is significantly smaller than the number of ligand molecules needed for a maximal enhancement of the protonation rate. In addition to the economical use of the ligand, this information can also be utilized as a diagnostic tool for the reaction mechanism in differentiating between single and multistep processes. The possible pitfalls in applying this diagnostic tool to PCET and cyclization reactions are discussed.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要