谷歌浏览器插件
订阅小程序
在清言上使用

Analysis of opossum kidney NaPi-IIc sodium-dependent phosphate transporter to understand Pi handling in human kidney

Clinical and Experimental Nephrology(2018)

引用 7|浏览8
暂无评分
摘要
Background The role of Na + -dependent inorganic phosphate (Pi) transporters in the human kidney is not fully clarified. Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is caused by loss-of-function mutations in the IIc Na + -dependent Pi transporter (NPT2c/Npt2c/NaPi-IIc) gene. Another Na + -dependent type II transporter, (NPT2A/Npt2a/NaPi-IIa), is also important for renal Pi reabsorption in humans. In mice, Npt2c deletion does not lead to hypophosphatemia and rickets because Npt2a compensates for the impaired Pi reabsorption. To clarify the differences between mouse and human, we investigated the relation between NaPi-IIa and NaPi-IIc functions in opossum kidney (OK) cells. Methods We cloned NaPi-IIc from OK cells and created opossum NaPi-IIc (oNaPi-IIc) antibodies. We used oNaPi-IIc small interference (si)RNA and investigated the role of NaPi-IIc in Pi transport in OK cells. Results We cloned opossum kidney NaPi-IIc cDNAs encoding 622 amino acid proteins (variant1) and examined their pH- and sodium-dependency. The antibodies reacted specifically with 75-kDa and 150-kDa protein bands, and the siRNA of NaPi-IIc markedly suppressed endogenous oNaPi-IIc in OK cells. Treatment with siRNA significantly suppressed the expression of NaPi-4 (NaPi-IIa) protein and mRNA. oNaPi-IIc siRNA also suppressed Na + /H + exchanger regulatory factor 1 expression in OK cells. Conclusion These findings suggest that NaPi-IIc is important for the expression of NaPi-IIa (NaPi-4) protein in OK cells. Suppression of Npt2c may downregulate Npt2a function in HHRH patients.
更多
查看译文
关键词
Phosphate,Transporter,Proximal tubule,Hereditary hypophosphatemic rickets with hypercalciuria
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要