Chrome Extension
WeChat Mini Program
Use on ChatGLM

Diffusion Doping In Quantum Dots: Bond Strength And Diffusivity

NANOSCALE(2017)

Cited 25|Views10
No score
Abstract
Semiconducting materials uniformly doped with optical or magnetic impurities have been useful in a number of potential applications. However, clustering or phase separation during synthesis has made this job challenging. Recently the "inside out" diffusion doping was proposed to be successful in obtaining large sized quantum dots (QDs) uniformly doped with a dilute percentage of dopant atoms. Herein, we demonstrate the use of basic physical chemistry of diffusion to control the size and concentration of the dopants within the QDs for a given transition metal ion. We have studied three parameters; the bond strength of the core molecules and the diffusion coefficient of the diffusing metal ion are found to be important while the ease of cation exchange was not highly influential in the control of size and concentration of the single domain dilute magnetic semiconductor quantum dots (DMSQDs) with diverse dopant ions M2+ (Fe2+, Ni2+, Co2+, Mn2+). Steady state optical emission spectra reveal that the dopants are incorporated inside the semiconducting CdS and the emission can be tuned during shell growth. We have shown that this method enables control over doping percentage and the QDs show a superior ferromagnetic response at room temperature as compared to previously reported systems.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined