谷歌浏览器插件
订阅小程序
在清言上使用

Optimized Energy of Spectral Coronary CT Angiography for Coronary Plaque Detection and Quantification.

Journal of cardiovascular computed tomography(2018)

引用 33|浏览9
暂无评分
摘要
BACKGROUND:To optimize spectral coronary computed tomography angiography (CTA) for quantification of coronary artery plaque components.MATERIALS AND METHODS:Fifty-one subjects were prospectively enrolled (88.2% male) (NCT02740699). Dual energy coronary CTA was performed at 90/Sn150 kVp using a 3rd generation dual-source CT scanner (SOMATOM Force, Siemens Healthcare). Dual energy images were reconstructed with a) linear mixed blending of 90 and Sn150 kVp data, b) virtual monoenergetic algorithm from 40 to 150 keV (at 10- keV intervals), and c) noise-optimized virtual monoenergetic algorithm from 40 to 150 keV. Image noise, iodine signal-to-noise-ratio (SNR), and contrast-to-noise ratio (CNR) for calcified and non-calcified plaque were measured. Qualitative readings of image quality were performed. Semi-automated software (QAngioCT, Medis) was used to quantify coronary plaque. Linear mixed-models that account for within-subject correlation of plaques were used to compare the results.RESULTS:100-150 keV noise-optimized virtual monoenergetic images had lower image noise than linear mixed images (all P < 0.05). The highest iodine SNR was achieved in 40 keV noise-optimized virtual monoenergetic images (33.3 ± 0.6 vs 23.3 ± 0.7 for linear mixed images, P < 0.001). 40-70 keV noise-optimized virtual monoenergetic images and 70 keV virtual monoenergetic images had superior coronary plaque CNR versus linear mixed images (all P < 0.01) with a maximum improvement of 20.1% and 22.7% for calcified plaque and non-calcified plaque (38.8 ± 2.2 vs 32.3 ± 2.3 and 17.3 ± 1.3 vs 14.1 ± 1.4, respectively). Using 90/Sn150 kVp linear mixed images as a reference, the plaque quantity was similar for 70 keV noise-optimized virtual monoenergetic images whereas low keV images (e.g. 40 keV) yielded significantly higher coronary plaque volumes (all P < 0.001).CONCLUSION:Spectral coronary CTA with low energy (40-70 keV) post-processing can improve the CNR of coronary plaque components. However, low energies (such as 40 keV) resulted in different absolute volumes of coronary plaque compared to "conventional" mixed 90/Sn150 kVp images.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要