Chrome Extension
WeChat Mini Program
Use on ChatGLM

On Context-Aware DDoS Attacks Using Deep Generative Networks

International Conference on Computer Communications and Networks (ICCCN)(2018)CCF C

Department of Computer Science

Cited 6|Views22
Abstract
Distributed Denial of Service (DDoS) attacks continue to be one of the most severe threats in the Internet. The intrinsic challenge in preventing DDoS attacks is to distinguish them from legitimate flash crowds since two have many traffic characteristics in common. Today most DDoS detection techniques focus on finding parametric differences between the patterns in attack and legitimate traffic. However, such techniques are very sensitive to the threshold values set on the parameters and more importantly legitimate traffic features might be mimicked by smart attackers to generate requests that look like flash crowds. In this paper, we propose a framework for training networks for such smart attacks. Our framework is based on Deep Generative Network models and our contributions are two-fold.We first show that legitimate traffic features can be mimicked without explicitly modeling their distributions. Second, we introduce the concept of context-aware DDoS attacks. We show that an attacker can generate traffic that looks similar to flash crowds to be undetected for long periods of time. However, the ability of generating such attacks is constrained by the budget of the attacker. A context-aware attacker is the one that can intelligently use its budget to maximize the damage in the victim network. Our study provides a framework for training networks for such DDoS attack scenarios.
More
Translated text
Key words
context-aware DDoS attacks,legitimate flash crowds,traffic characteristics,DDoS detection techniques,deep generative network models,distributed denial of service attacks,Internet,legitimate traffic features
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper

要点】:本文提出了一种基于深度生成网络模型的框架,用于实现模仿正常流量特征的智能DDoS攻击,并引入了上下文感知的DDoS攻击概念。

方法】:通过训练深度生成网络模型,模仿正常流量特征,生成能够长时间不被检测出的攻击流量。

实验】:论文中未提供具体实验细节和数据集名称,但提出理论上攻击者可根据预算智能调整攻击策略,以最大化对受害者网络的损害。