谷歌浏览器插件
订阅小程序
在清言上使用

Role Of The Disulfide Bond In Stabilizing And Folding Of The Fimbrial Protein Drae From Uropathogenic Escherichia Coli

JOURNAL OF BIOLOGICAL CHEMISTRY(2017)

引用 8|浏览20
暂无评分
摘要
Dr fimbriae are homopolymeric adhesive organelles of uropathogenic Escherichia coli composed of DraE subunits, responsible for the attachment to host cells. These structures are characterized by enormously high stability resulting from the structural properties of an Ig-like fold of DraE. One feature of DraE and other fimbrial subunits that makes them peculiar among Ig-like domain-containing proteins is a conserved disulfide bond that joins their A and B strands. Here, we investigated how this disulfide bond affects the stability and folding/unfolding pathway of DraE. We found that the disulfide bond stabilizes self-complemented DraE (DraE-sc) by similar to 50 kJ mol(-1) in an exclusively thermodynamic manner, i.e. by lowering the free energy of the native state and with almost no effect on the free energy of the transition state. This finding was confirmed by experimentally determined folding and unfolding rate constants of DraE-sc and a disulfide bond-lacking DraE-sc variant. Although the folding of both proteins exhibited similar kinetics, the unfolding rate constant changed upon deletion of the disulfide bond by 10 orders of magnitude, from similar to 10(-17) s(-1) to 10(-7) s(-1). Molecular simulations revealed that unfolding of the disulfide bond-lacking variant is initiated by strands A or G and that disulfide bond-mediated joining of strand A to the core strand B cooperatively stabilizes the whole protein. We also show that the disulfide bond in DraE is recognized by the DraB chaperone, indicating a mechanism that precludes the incorporation of less stable, non-oxidized DraE forms into the fimbriae.
更多
查看译文
关键词
Dr fimbriae,DraE adhesin,bacterial adhesion,chaperone-usher pathway,disulfide,immunoglobulin fold,immunoglobulin-like domain,protein folding,protein stability
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要