Chrome Extension
WeChat Mini Program
Use on ChatGLM

Stage-I fatigue crack studies in order to validate the dislocation-free zone model of fracture for bulk materials

PHILOSOPHICAL MAGAZINE(2015)

Cited 5|Views14
No score
Abstract
Stage-I fatigue cracks are commonly described by the model of Bilby, Cottrell and Swinden (BCS model). However, since several experimental investigations have shown a dislocation-free zone (DFZ) in front of crack-tips, it is necessary to validate the new DFZ model and to examine the deviations to the BCS model. Therefore, the dislocation density distribution is derived from height profiles of slip lines in front of stage-I fatigue cracks in CMSX4 (R) single crystals measured by contact-mode atomic force microscopy. This is possible, because the cracks are initiated at notches milled by focused ion beam technique directly on slip planes with a high Schmid factor. Consequently, the directions of the Burgers vectors are well known; it is possible to calculate the dislocation density distributions from the height profiles. The measured distributions are compared to the calculated distribution function of the DFZ model proposed by Chang et al. The additionally measured microscopic friction stress of the dislocations is then used to calculate the influence of grain boundaries on the dislocation density distribution in front of stage-I cracks. The calculation is done by the extended DFZ model of Shiue et al. and compared with the measured distribution function in polycrystalline specimens. Finally, the crack-tip sliding displacement as a measure for the crack propagation rate is compared for the DFZ model and the BCS model with the experimentally revealed values. The important result: the often used BCS model does not reflect the experimental measurements. On the contrary, the DFZ model reflects the measurements at stage-I cracks qualitatively and quantitatively.
More
Translated text
Key words
crack-tip sliding displacement,friction stress,DFZ model,dislocation-free zone,stage-I crack
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined