谷歌浏览器插件
订阅小程序
在清言上使用

Space-quality data from balloon-borne telescopes

Astroparticle Physics(2012)

引用 9|浏览41
暂无评分
摘要
We present a method for attaining sub-arcsecond pointing stability during sub-orbital balloon flights, as designed for in the High Altitude Lensing Observatory (HALO) concept. The pointing method presented here has the potential to perform near-space quality optical astronomical imaging at ∼1–2% of the cost of space-based missions. We also discuss an architecture that can achieve sufficient thermo-mechanical stability to match the pointing stability. This concept is motivated by advances in the development and testing of Ultra Long Duration Balloon (ULDB) flights which promise to allow observation campaigns lasting more than three months. The design incorporates a multi-stage pointing architecture comprising: a gondola coarse azimuth control system, a multi-axis nested gimbal frame structure with arcsecond stability, a telescope de-rotator to eliminate field rotation, and a fine guidance stage consisting of both a telescope mounted angular rate sensor and guide CCDs in the focal plane to drive a Fast-Steering Mirror. We discuss the results of pointing tests together with a preliminary thermo-mechanical analysis required for sub-arcsecond pointing at high altitude. Possible future applications in the areas of wide-field surveys and exoplanet searches are also discussed.
更多
查看译文
关键词
Weak lensing,Cosmology,Surveys,Balloons
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要