Strain-Induced Energy Gap Variation In Znte/Znmgte Core/Shell Nanowires

APPLIED PHYSICS LETTERS(2014)

引用 13|浏览42
暂无评分
摘要
Strain-induced changes of ZnTe energy gap in ZnTe/ZnMgTe core/shell nanowires arising from lattice mismatch between the core and the shell semiconductor are studied by means of optical methods. It is shown that the increase of the Mg content in the shell, as well as the increase of the shell thickness result in an effective redshift of the near band edge photoluminescence from ZnTe nanowire cores, which reflects directly the decrease of energy gap under tensile strain conditions. The conclusions are supported by theoretical calculations in terms of the valence force field model. The observed change of ZnTe energy gap can be as large as 120 meV with respect to the unstrained conditions and can be tuned in a continuous manner by adjusting shell parameters, which open a path towards an effective band gap engineering in these structures. (C) 2014 AIP Publishing LLC.
更多
查看译文
关键词
Nanosensors
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要