谷歌浏览器插件
订阅小程序
在清言上使用

Influence of Composition, Structure and Testing Atmosphere on the Tribological Performance of W–S–N Coatings

Surface & coatings technology/Surface and coatings technology(2014)

引用 27|浏览8
暂无评分
摘要
W-S-N coatings deposited by reactive magnetron sputtering offer the possibility of ultra-low friction in unlubricated sliding. In this work, W-S-N coatings of different composition and structure have been deposited, characterised and evaluated with respect to the tribological performance and tribofilm formation. The composition was varied by changing the flow of N-2 into the deposition chamber, leading to N contents ranging from 0 to 47 at.%. W-S-N coatings deposited without substrate heating are amorphous, while substrate heating results in coatings containing nanocystalline tungsten sulphide (WSx) for low N contents, and nanocrystalline tungsten nitride (WyN) at a high N content. The coatings were tribologically tested against steel balls in four different atmospheres dry N-2, dry air, humid N-2 and humid air to study the effects of atmospheric O-2 and H2O both separately and simultaneously. In dry N-2, all coatings exhibited an excellent performance with very low friction (mu approximate to 0.02) and wear. Notably, this included the N-richest and hardest coating, containing nanocrystalline WyN and only 13 at.% of S. The friction and wear increased on changing the atmosphere, in the order of dry air-humid N-2-humid air. In these three non-inert atmospheres, the friction and wear also increased with increasing N content of the coating. It is thus concluded that the presence of O-2, the presence of H2O, and a high N content (i.e., low Wand S contents) are three factors increasing the risk of high friction and wear, especially when occurring together. Raman spectroscopy mapping of the contact surfaces on the coatings and the balls showed that low friction and wear is connected to the presence of WS2 tribofilms in the contact, and that the three previously mentioned factors affect the formation and function of this tribofilm. (C) 2014 The Authors. Published by Elsevier B.V.
更多
查看译文
关键词
WS2,Friction,Humidity,Tribofilm,Structure
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要