谷歌浏览器插件
订阅小程序
在清言上使用

A unique mouse strain that develops spontaneous, iodine-accelerated, pathogenic antibodies to the human thyrotrophin receptor.

JOURNAL OF IMMUNOLOGY(2015)

引用 33|浏览18
暂无评分
摘要
Abs that stimulate the thyrotropin receptor (TSHR), the cause of Graves' hyperthyroidism, only develop in humans. TSHR Abs can be induced in mice by immunization, but studying pathogenesis and therapeutic intervention requires a model without immunization. Spontaneous, iodine-accelerated, thyroid autoimmunity develops in NOD.H2(h4) mice associated with thyroglobulin and thyroid-peroxidase, but not TSHR, Abs. We hypothesized that transferring the human TSHR A-subunit to NOD.H2(h4) mice would result in loss of tolerance to this protein. BALB/c human TSHR A-subunit mice were bred to NOD.H2(h4) mice, and transgenic offspring were repeatedly backcrossed to NOD.H2(h4) mice. All offspring developed Abs to thyroglobulin and thyroid-peroxidase. However, only TSHR-transgenic NOD.H2(h4) mice (TSHR/NOD.H2(h4)) developed pathogenic TSHR Abs as detected using clinical Graves' disease assays. As in humans, TSHR/NOD.H2(h4) female mice were more prone than male mice to developing pathogenic TSHR Abs. Fortunately, in view of the confounding effect of excess thyroid hormone on immune responses, spontaneously arising pathogenic human TSHR Abs cross-react poorly with the mouse TSHR and do not cause thyrotoxicosis. In summary, the TSHR/NOD. H2(h4) mouse strain develops spontaneous, iodine-accelerated, pathogenic TSHR Abs in female mice, providing a unique model to investigate disease pathogenesis and test novel TSHR Ag-specific immunotherapies aimed at curing Graves' disease in humans.
更多
查看译文
关键词
human thyrotrophin receptor,pathogenic antibodies,unique mouse strain,iodine-accelerated
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要