Chrome Extension
WeChat Mini Program
Use on ChatGLM

Aldo-keto Reductase 1B15 (AKR1B15): A MITOCHONDRIAL HUMAN ALDO-KETO REDUCTASE WITH ACTIVITY TOWARD STEROIDS AND 3-KETO-ACYL-CoA CONJUGATES

Journal of Biological Chemistry(2015)

Cited 17|Views12
No score
Abstract
Aldo-keto reductases (AKRs) comprise a superfamily of proteins involved in the reduction and oxidation of biogenic and xenobiotic carbonyls. In humans, at least 15 AKR superfamily members have been identified so far. One of these is a newly identified gene locus, AKR1B15, which clusters on chromosome 7 with the other human AKR1B subfamily members (i.e. AKR1B1 and AKR1B10). We show that alternative splicing of the AKR1B15 gene transcript gives rise to two protein isoforms with different N termini: AKR1B15.1 is a 316-amino acid protein with 91% amino acid identity to AKR1B10; AKR1B15.2 has a prolonged N terminus and consists of 344 amino acid residues. The two gene products differ in their expression level, subcellutar localization, and activity. In contrast with other AKR enzymes, which are mostly cytosolic, AKR1B15.1 co-localizes with the mitochondria. Kinetic studies show that AKR1B15.1 is predominantly a reductive enzyme that catalyzes the reduction of androgens and estrogens with high positional selectivity (17 beta-hydroxysteroid dehydrogenase activity) as well as 3-ketoacyl-CoA conjugates and exhibits strong cofactor selectivity toward NADP(H). In accordance with its substrate spectrum, the enzyme is expressed at the highest levels in steroid-sensitive tissues, namely placenta, testis, and adipose tissue. Placental and adipose expression could be reproduced in the Be Wo and SCiBS cell lines, respectively. In contrast, AKR1 B15.2 localizes to the cytosol and displays no enzymatic activity with the substrates tested. Collectively, these results demonstrate the exis- tence of a novel catalytically active AKR, which is associated with mitochondria and expressed mainly in steroid-sensitive tissues.
More
Translated text
Key words
Alternative Splicing,Enzyme Kinetics,Gene Expression,Mitochondria,Oxidation-Reduction (Redox),Reductase,Steroid,3-Keto-acyl-CoA,Aldo-Keto Reductase
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined