谷歌浏览器插件
订阅小程序
在清言上使用

Phospholamban phosphorylation increases the passive calcium leak from cardiac sarcoplasmic reticulum

Pflügers Archiv : European journal of physiology(2012)

引用 15|浏览9
暂无评分
摘要
Phospholamban (PLN) is a 52 amino acid integral membrane protein of the sarcoplasmic reticulum (SR) that exists in both monomeric and pentameric forms. In its unphosphorylated state, PLN inhibits the SR Ca 2+ ATPase (SERCA). This inhibition is relieved when PLN is phosphorylated as a result of β-adrenergic stimulation of the heart. Consistent with some predictions from molecular models and from functional studies of PLN incorporated into planar lipid bilayers, it has also been postulated that pentameric PLN can also form ion-selective channels. Other molecular models contradict this hypothesis, however. In the work reported here, we used the Ca 2+ -sensitive fluorescent dye Fura-2, to examine the passive Ca 2+ permeability of the SR membrane in vesicles derived from cardiac ventricle. We have found that phosphorylation of PLN by protein kinase A (PKA) leads to an increase in the rate of Ca 2+ leak from Ca 2+ -loaded SR vesicles. This enhanced rate of Ca 2+ leak from the SR is also observed when SR vesicles are incubated with a PLN specific antibody (A1) that mimics phosphorylation of PLN. The ryanodine receptor blocker ruthenium red does not affect the increased rate of Ca 2+ leak from the SR after PLN phosphorylation with PKA or after exposure to A1 antibody, arguing against a possible role of ryanodine receptors in mediating the enhanced leak. Our results are consistent with the hypothesis that phosphorylated PLN forms or regulates a Ca 2+ leak pathway in cardiac SR membranes in situ.
更多
查看译文
关键词
Phospholamban,Ca2+-ATPase,SERCA,Basal Ca2+ leak,Phosphorylation,Protein kinase A
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要