谷歌浏览器插件
订阅小程序
在清言上使用

Dna Damage Levels and Biochemical Repair Capacities Associated with Xrcc1 Deficiency

Biochemistry(2005)

引用 37|浏览15
暂无评分
摘要
Base excision repair (BER) is the major corrective pathway for most spontaneous, oxidative, and alkylation DNA base and sugar damage. X-ray cross-complementing 1 (XRCC1) has been suggested to function at nearly every step of this repair process, primarily through direct protein-protein interactions. Using whole cell extract (WCE) repair assays and DNA damage measurement techniques, we examined systematically the quantitative contribution of XRCC1 to specific biochemical steps of BER and single-strand break repair (SSBR). Our studies reveal that XRCC1-deficient Chinese hamster ovary WCEs exhibit normal base excision activity for 8-oxoguanine (8-OH-dG), 5-hydroxycytosine, ethenoadenine, and uracil lesions. Moreover, XRCC1 mutant EM9 cells possess steady-state levels of endogenous 8-OH-dG base damage similar to those of their wild-type counterparts. Abasic site incision activity was found to be normal in XRCC1-deficient cell extracts, as were the levels of abasic sites in isolated chromosomal DNA from mutant cells. While one- and five-nucleotide gap filling was not affected by XRCC1 status, a significant approximately 2-4-fold reduction in nick ligation activity was observed in EM9 WCEs. Our results herein suggest that the primary biochemical defect associated with XRCC1 deficiency is in the ligation step of BER/SSBR, and that XRCC1 plays no significant role in endogenous base damage and abasic site repair, or in promoting the polymerase gap-filling step.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要