Enhancing the electrochemical properties of TiNb2O7 anodes with SP-CNT binary conductive agents for both liquid and solid state lithium ion batteries.

Li-Qian Cheng, Xinyuan Xie,Kai Chen, Yijuan He, Hu Xu, Ruiping Liu,Ming Feng

RSC advances(2024)

引用 0|浏览0
暂无评分
摘要
A high performance oxide composite electrode is obtained with a two-step solid state calcined titanium niobium oxide TiNb2O7 (TNO) anode and super P-carbon nanotube (SP-CNT) binary conductive agents. The solid state synthesized TNO-0.2C (the proportion of CNTs in the binary conductive agent is 20% wt) anode exhibits a high reversible discharge capacity of 278.6 mA h g-1 at 0.5C, a competitive rate capability with reported works that employed wet chemical methods at moderate rates (178.1 mA h g-1 at 10C), and an excellent capacity retention of 92.2% after 200 cycles at 1.5C/1.5C. The enhancement in electrochemical properties of the TNO-0.2C anode is mainly attributed to the combination of the short range and long range conductive agents in the SP-CNT binary conductive system, which guarantees an efficient electronic conductive network. The Li|Li1.3Al0.3Ti1.7(PO4)3 composite polymer electrolyte (LATPCPEs)|TNO-0.2C solid state batteries are also assembled, which deliver a high initial reversible discharge capacity of 241.3 mA h g-1 at 1C and a good capacity retention rate of 93% after 50 cycles. This work provides an efficient way to improve the electrochemical properties of TNO anodes in lithium ion batteries, especially for solid state batteries.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要