Tunable magnetism in titanium-based kagome metals by rare-earth engineering and high pressure

Communications Materials(2024)

引用 0|浏览2
暂无评分
摘要
Rare-earth engineering is an effective way to introduce and tune magnetism in topological kagome materials, which have been acting as a fertile platform to investigate the quantum interactions between geometry, topology, spin, and correlation. Here, we report the synthesis, structure, and physical properties of titanium-based kagome metals RETi3Bi4 (RE = Yb, Pr, and Nd) with various magnetic states. They all crystallize in the orthogonal space group Fmmm (No. 69), featuring distorted titanium kagome lattices and rare-earth zig-zag chains. By changing the rare earth atoms in the zig-zag chains, the magnetism can be tuned from nonmagnetic YbTi3Bi4 to short-range ordered PrTi3Bi4 (Tanomaly ~ 8.2 K), and finally to ferromagnetic NdTi3Bi4 (Tc ~ 8.5 K). In-situ resistance measurements of NdTi3Bi4 under high pressure further reveal a tunable ferromagnetic ordering temperature. These results highlight RETi3Bi4 as a promising family of kagome metals to explore nontrivial band topology and exotic phases. Rare-earth engineering is an effective way to introduce and tune magnetism in topological materials. Here, titanium-based kagome metals RETi3Bi4 (RE = Yb, Pr, and Nd) are synthesized and characterized, whereby changing the rare earth atoms in zig-zag chains the magnetism can be tuned from nonmagnetic YbTi3Bi4 to short-range ordered PrTi3Bi4 and finally to ferromagnetic NdTi3Bi4.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要