Learning spatio-temporal dynamics on mobility networks for adaptation to open-world events

Artificial Intelligence(2024)

引用 0|浏览3
暂无评分
摘要
As a decisive part in the success of Mobility-as-a-Service (MaaS), spatio-temporal dynamics modeling on mobility networks is a challenging task particularly considering scenarios where open-world events drive mobility behavior deviated from the routines. While tremendous progress has been made to model high-level spatio-temporal regularities with deep learning, most, if not all of the existing methods are neither aware of the dynamic interactions among multiple transport modes on mobility networks, nor adaptive to unprecedented volatility brought by potential open-world events. In this paper, we are therefore motivated to improve the canonical spatio-temporal network (ST-Net) from two perspectives: (1) design a heterogeneous mobility information network (HMIN) to explicitly represent intermodality in multimodal mobility; (2) propose a memory-augmented dynamic filter generator (MDFG) to generate sequence-specific parameters in an on-the-fly fashion for various scenarios. The enhanced event-aware spatio-temporal network, namely EAST-Net, is evaluated on several real-world datasets with a wide variety and coverage of open-world events. Both quantitative and qualitative experimental results verify the superiority of our approach compared with the state-of-the-art baselines. What is more, experiments show generalization ability of EAST-Net to perform zero-shot inference over different open-world events that have not been seen.
更多
查看译文
关键词
Open-world event,Spatio-temporal dynamics,Human mobility network,Graph neural networks
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要