Hyperspectral imaging of a microwave argon plasma jet expanding in ambient air.

The Review of scientific instruments(2024)

引用 0|浏览0
暂无评分
摘要
Non-equilibrium plasmas at atmospheric pressure are often characterized by optical emission spectroscopy. Despite the simplicity of recording optical emission spectra in plasmas, the determination of spatially resolved plasma properties (e.g., electron temperature) in an efficient way is very challenging. In this study, spatially resolved optical images of a microwave argon plasma jet expanding into the ambient air are recorded over a wide range of wavelengths using a hyperspectral imaging system based on a tunable Bragg-grating imager coupled to a scientific complementary metal-oxide-semiconductor camera. The system's working principle is detailed, along with the necessary post-processing steps. Further analysis of the spatial-spectral data, including the Abel transform used to determine 2D radially resolved spatial mappings, is also presented. Overall, the proposed approach provides unprecedented cartographies of key plasma parameters, such as argon and oxygen line emission intensities, Ar metastable number densities, and argon excitation temperatures. Considering that all these plasma parameters are obtained from measurements performed in a reasonable time, Bragg-grating-based hyperspectral imaging constitutes an advantageous plasma diagnostic technique for detailed analysis of microwave plasma jets used in several applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要