Control Simulation for an ESnet-JLab FPGA Accelerated Transport Load Balancer

EPJ Web of Conferences(2024)

引用 0|浏览1
暂无评分
摘要
The Thomas Jefferson National Accelerator Facility collaborates with Lawrence Berkeley National Lab to implement a dynamic UDP load balancer (LB) for high-throughput scientific data processing. This study employs a simulation to compare the efficacy of Proportional, Integrative, Derivative (PID) controllers and Q-Learning based controllers for configuring the load balancer. Two cluster configurations, homogeneous and heterogeneous, were examined. The simulation results indicate that PID control is superior in both configurations. In homogeneous clusters, PID achieved a 50% reduction in aggregate queue levels and maintained an even distribution across computational nodes (CNs). In contrast, Q-Learning was less effective in heterogeneous environments, exacerbating queue levels compared to the no-control case and failing to achieve balance across the cluster. Our findings suggest that PID control should be used for the ESnet-JLab FPGA Accelerated Transport (EJFAT) system.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要