De-nitrosylation Coordinates Appressorium Function for Infection of the Rice Blast Fungus.

Advanced science (Weinheim, Baden-Wurttemberg, Germany)(2024)

引用 0|浏览2
暂无评分
摘要
As a signaling molecule, nitric oxide (NO) regulates the development and stress response in different organisms. The major biological activity of NO is protein S-nitrosylation, whose function in fungi remains largely unclear. Here, it is found in the rice blast fungus Magnaporthe oryzae, de-nitrosylation process is essential for functional appressorium formation during infection. Nitrosative stress caused by excessive accumulation of NO is harmful for fungal infection. While the S-nitrosoglutathione reductase GSNOR-mediated de-nitrosylation removes excess NO toxicity during appressorium formation to promote infection. Through an indoTMT switch labeling proteomics technique, 741 S-nitrosylation sites in 483 proteins are identified. Key appressorial proteins, such as Mgb1, MagB, Sps1, Cdc42, and septins, are activated by GSNOR through de-nitrosylation. Removing S-nitrosylation sites of above proteins is essential for proper protein structure and appressorial function. Therefore, GSNOR-mediated de-nitrosylation is an essential regulator for appressorium formation. It is also shown that breaking NO homeostasis by NO donors, NO scavengers, as well as chemical inhibitor of GSNOR, shall be effective methods for fungal disease control.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要