Magnetic field expulsion in optically driven YBa_2Cu_3O_6.48

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
Coherent optical driving in quantum solids is emerging as a new research frontier, with many demonstrations of exotic non-equilibrium quantum phases. These are based on engineered band structures, and on stimulated nonlinear interactions between driven modes. Enhanced functionalities like ferroelectricity, magnetism and superconductivity have been reported in these non-equilibrium settings. In high-Tc cuprates, coherent driving of certain phonon modes induces a transient state with superconducting-like optical properties, observed far above T_c and throughout the pseudogap phase. Questions remain not only on the microscopic nature of this phenomenon, but also on the macroscopic properties of these transient states, beyond the documented optical conductivities. Crucially, it is not clear if driven cuprates exhibit Meissner-like diamagnetism. Here, the time-dependent magnetic-field amplitude surrounding a driven YBa_2Cu_3O_6.48 sample is probed by measuring Faraday rotation in a GaP layer adjacent to the superconductor. For the same driving conditions that result in superconducting-like optical properties, an enhancement of magnetic field at the edge of the sample is detected, indicative of induced diamagnetism. The dynamical field expulsion measured after pumping is comparable in size to the one expected in an equilibrium type II superconductor of similar shape and size with a volume susceptibility χ_v of order -0.3. Crucially, this value is incompatible with a photo-induced increase in mobility without superconductivity. Rather, it underscores the notion of a pseudogap phase in which incipient superconducting correlations are enhanced or synchronized by the optical drive.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要